
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A DEVELOPER
SENTIMENT ANALYSIS SYSTEM BASED ON GITHUB

COMMIT COMMENTS

ADRIÁN GONZÁLEZ HERNANDO
2019

TRABAJO DE FIN DE GRADO

T́ıtulo: Diseño y desarrollo de un sistema de análisis de sentimientos

basado en los comentarios de commits de GitHub.

T́ıtulo (inglés): Design and development of a developer sentiment analysis

system based on GitHub commit comments.

Autor: Adrián González Hernando.

Tutor: Carlos A. Iglesias Fernández.

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos.

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A

DEVELOPER SENTIMENT ANALYSIS

SYSTEM BASED ON GITHUB COMMIT

COMMENTS

ADRIÁN GONZÁLEZ HERNANDO

2019

Resumen

El objetivo de este trabajo es llevar a cabo un sistema capaz de obtener comentarios de

commits de GitHub para su posterior ánalisis de sentimientos.

En primer lugar, como es lógico, se ha necesitado una gran cantidad de comentarios de

commits para poder finalmente establecer unas rigurosas conclusiones. Para ello, se han

utilizado múltiples herramientas, descritas en la memoria, como son GHTorrent (a través

de su página web o de mongoDB) o una desarrollada por mı́ a través de Python, haciendo

peticiones a la API de GitHub.

A continuación, una vez que se han obtenido los datos, éstos han sido posteriormente

analizados a través de Senpy y después el resultado del análisis con sus correspondientes

datos (el repositorio en el que se ha hecho el commit comment, la hora a la que se ha

creado...) han sido almacenados en Elasticsearch.

Una vez que los datos han sido almacenados en Elasticsearch, se ha podido proceder

finalmente a la visualización de los resultados creando un cuadro de mandos por medio de

Sefarad y Web Components, los cuales ofrecen una buena interfaz de usuario.

Posteriormente se podrán visualizar todos los elementos en el cuadro de mandos. Esta

tesis permite al usuario extraer sus propias conclusiones sobre los sentimientos y los lengua-

jes de programación entre otros aspectos.

Palabras clave: Sefarad, mongoDB, Luigi, Scrap, Web Components, GitHub,

Senpy, Elasticsearch, Luigi, commit comments, GHTorrent

I

Abstract

The objective of this end of degree project has been to develop a system that enables it to

obtain commit comments from GitHub in order to be analyzed as sentiment.

First of all the procedure needs to gather a large number of commit comments to be

able to draw some accurate conclusions. To pursue this task, we have used multiple tools,

each of them has been described in this study. They are GHTorrent (through its website

or mongoDB) and another one developed by myself through Python and with requests to

the API GitHub.

Once the data has been obtained, it has been analyzed through Senpy. Later the result

including its corresponding data has been stored using Elasticsearch. This data is formed

by the repository name in which the commit comment has been made, the time they had

been issued...

After the data has been stored in Elasticsearch, it is finally possible to visualize the

results by creating a dashboard by using Sefarad and Web Components, which offers a

good interface for the user.

Once all the elements can be visualized in the dashboard, these findings allow the user

to draw his own conclusions about sentiments and programming languages as well as other

features.

Keywords: Sefarad, mongoDB, Luigi, Scrap, Web Components, GitHub,

Senpy, Elasticsearch, Luigi, commit comments, GHTorrent

III

Agradecimientos

Este Trabajo Fin de Grado supone para mı́ la finalización de otro ciclo de mi vida. Sin

lugar a dudas, uno de los que más esfuerzo ha requerido.

En primer lugar quisiera dedicárselo a mis padres, Esther y Luciano, sin los cuales

hubiese sido completamente imposible seguir este camino. Gracias a vosotros he podido

realizar este trabajo, este grado y todo lo que ha conllevado, en definitiva, gracias por

guiarme en este camino y en los que están por llegar. También se lo quisiera dedicar a la

memoria de mi abuelo Emilio, por ser un ejemplo de constancia y superación.

En segundo lugar me gustaŕıa agradecerselo a mis amigos por ser otro apoyo fundamen-

tal, especialmente a Javi y Pablo.

En tercer lugar gracias a los miembros del GSI, por ayudarme en todo momento.

Por último y no menos importante, a mi tutor Carlos A. Iglesias por ayudarme a buscar

el TFG idóneo, orientarme durante la realización del mismo y guiarme hasta concluir el

proyecto.

V

Contents

Resumen I

Abstract III

Agradecimientos V

Contents VII

List of Figures XI

List of Tables XIII

1 Introduction 1

1.1 Context . 1

1.2 Project goals and tasks . 3

1.3 Structure of this document . 4

2 Enabling Technologies 5

2.1 Introduction . 5

2.2 GHTorrent . 5

2.3 API REST GitHub . 6

2.4 MongoDB . 6

2.5 Senpy . 7

2.6 Luigi . 8

2.7 Elasticsearch . 9

VII

2.8 Sefarad . 10

2.9 Polymer . 10

3 Requirement Analysis 13

3.1 Introduction . 13

3.2 Use cases . 14

3.2.1 System actors . 14

3.3 System sequence . 15

3.3.1 Admin case . 15

3.3.2 User case . 16

3.4 Class . 17

3.5 State diagram . 18

4 Architecture 19

4.1 Introduction . 19

4.1.1 Overview . 19

4.2 First module: Obtaining data . 20

4.3 Second module: Analyzing data . 23

4.4 Third module: Indexing data . 25

4.5 Fourth module: Visualizing data . 26

5 Case study & Results 31

5.1 Introduction . 31

5.2 Case Study . 31

5.2.1 Repositories analyzed . 32

5.2.2 Dashboard functionality . 32

5.2.3 Elasticsearch requests . 34

5.2.4 Dashboard update . 36

5.3 Results . 36

5.3.1 Programming language . 36

5.3.2 Time . 37

5.3.3 Date . 38

6 Conclusions and future work 41

6.1 Introduction . 41

6.2 Achieved goals . 42

6.3 Future work . 42

6.4 Problems overcome . 43

6.5 Conclusions . 44

Appendix A Impact of this project i

A.1 Introduction . i

A.2 Social impact . i

A.3 Environmental impact . ii

A.4 Economic impact . ii

A.5 Ethical Implications . ii

Appendix B Economic budget iii

B.1 Human resources . iii

B.2 Physical resources . iii

B.3 Licences & Taxes . iv

Bibliography v

List of Figures

2.1 Senpy processes . 7

2.2 Luigi’s diagram . 8

2.3 Sefarad architecture . 10

3.1 Use case UML diagram . 14

3.2 Sequence admin UML diagram . 16

3.3 Sequence UML diagram . 17

3.4 Class UML diagram . 18

3.5 State diagram . 18

4.1 Architecture . 20

4.2 GHTorrent’s output . 22

4.3 First module . 23

4.4 On the top Google chart Bar-chart, on the bottom Google chart pie 27

4.5 Number chart . 28

4.6 Material search chart . 28

4.7 Commit comment chart . 29

5.1 Dashboard implementation . 32

5.2 Senticommit . 33

5.3 Commit comment’s distribution per programming language 37

XI

List of Tables

1.1 Sentiments per programming language . 2

1.2 Sentiments per repository . 2

1.3 Commits Sentiment Analysis Statistics . 3

5.1 Repositories . 32

5.2 commit comment’s distribution per time . 38

5.3 Commit comments per date . 38

XIII

CHAPTER1
Introduction

1.1 Context

Every day human beings can experience different feelings in the various aspects of life:

in our private life, at work or in any other possible situation. All these feelings can be

sensed by human beings as long as people are interacting with each other. We can feel if

a person is frustrated due to the fact of having to face a negative situation as well as we

can see if somebody is experiencing a state of enjoyment. Sentiments can affect employees’

performance at work, especially programmers.

Happiness at work has traditionally been seen as a potential by-product of positive

outcome at work, rather than a pathway to business success. On the one hand, in the

labor market programmers do not choose what projects they would like to develop, and in

the long run, their interest might decrease and negatively affect their work. On the other

hand, non-professional programmers can develop what they would like, without the need

of delivery deadlines or pressures from their superiors. Anyway, this is not an excuse to

acknowledge that programming can be frustrating.

These feelings can be analyzed by software capable of detecting emotions, opinions

or assessments. How society feels about a specific topic can be easily detected by the

1

CHAPTER 1. INTRODUCTION

most popular social networks such as Facebook or Twitter. This thesis is going to analyze

sentiments in GitHub.

A similar analysis to this one has already been carried out in different projects and

their outcomes will be compared with those in this thesis. Their findings will be dealt with

bellow. The first research shows how much positive/neutral/negative the programming

language programmers are. Its conclusions are shown in the next table.

Positive Neutral Negative

Ruby 51% 17% 32%

Javascript 43% 20% 37%

c# 41% 20% 38%

Python 39% 20% 40%

Java 39% 19% 41%

PHP 38% 18% 44%

C 36% 21% 42%

C++ 33% 21% 46%

Table 1.1: Sentiments per programming language

https://github.com/sAbakumoff/gh-comments-sentiment

The following survey [1] analyzes commit comments of certain repositories. Some of

these repositories have also been used in this thesis in order to compare both results. The

results of this study can be observed in the following Table 1.2.

Jquery Rails CraftBukkit Diaspora MaNGOS TrinityCore

Positive 0.30 0.36 0.25 0.32 0.35 0.30

Neutral 0.31 0.33 0.28 0.37 0.31 0.40

Negative 0.39 0.31 0.47 0.31 0.34 0.30

Table 1.2: Sentiments per repository

2

https://github.com/sAbakumoff/gh-comments-sentiment

1.2. PROJECT GOALS AND TASKS

Although the upcoming research [2] (its results are in the Table 1.3) is not about commit

comments, it deals with sentiment analysis of GitHub commits. The author questioned the

following “are the security comments or discussions different (sentiment-wise) than the rest

of the comments or discussions?”. The conclusion was, as seen in Table 1.3, that there are

more negative discussions than commits.

Type Negative Neutral Positive

Discussions
Security 75.52 % 10.88% 16.58%

Rest 54.28% 20.37% 25.33%

Comments
Security 55.59% 23.42% 20.97%

Rest 46.94% 26.58% 26.47%

Table 1.3: Commits Sentiment Analysis Statistics

https://www.researchgate.net Security and emotion: Sentiment analysis of security discussions on GitHub

In this thesis, first we have to get the data from GitHub. GitHub provides a REST

API that allows us to get the data. At first the tool that was used to extract data is going

to be GHTorrent and finally it was a personalized scraper. GHTorrent and the scrapper

obtain data from Github public event time line. GitHub REST API provides users names,

commits, commit comments, pull requests. As it mentioned above, commit comments are

going to be the tool for the analysis of the sentiments.

Once the commit comments pass the Senpy filter (sentiment analysis) the result will be

saved in Elasticsearch. Finally the results will be shown in a dashboard.

1.2 Project goals and tasks

The purpose of this project is to classify the comments that people upload on the Internet,

especially the GitHub commit comments that programmers upload.

The tasks of this project are the following:

• To work with GHTorrent obtaining the GitHub data through its REST API.

• To filter this data with Senpy Analyses in order to obtain the classification of feelings.

• To utilize these data with Elasticsearch.

3

https://www.researchgate.net/publication/264799488_Security_and_emotion_Sentiment_analysis_of_security_discussions_on_GitHub

CHAPTER 1. INTRODUCTION

• To present such data using Sefarad.

1.3 Structure of this document

This section focuses on the structure of this document will be explained, which is made up

of 6 chapters.

Chapter 1 This chapter provides a global vision of the project.

Chapter 2 This chapter describes all the tools and technologies that have been used.

Chapter 3 This chapter shows different UML graphs and schemes that have been

considered important in order to explain the analysis and design of the project.

Chapter 4 This chapter is about all the modules that make up the architecture.

Chapter 5 This chapter deals with a case study in greater depth and also the results

will be detailed and analyzed.

Chapter 6 This chapter tries to share the conclusions that have been obtained as a

result of this thesis.

4

CHAPTER2
Enabling Technologies

2.1 Introduction

This chapter briefly explains the different technologies involved in the whole project. Start-

ing at the moment when the commit comments are scrapped to finally reach their visualiza-

tion. The most important technologies are: Sepy, Elasticsearch, Sefarad, Web Components

and GitHub REST API.

2.2 GHTorrent

GHTorrent1 is a project that gets the information from the GitHub REST API. Therefore,

GHTorrent can be used to obtain data (users, commits, ids..) from GitHub. It is possible

to collect all kinds of GitHub information of a certain day. The information provided is

classified by the most important aspects of GitHub that are: commit comments, commits,

events, followers, forks, pull requests, repositories, users...

GHTorrent gives us the chance of downloading this data as a MySQL database or

1https://github.com/gousiosg/github-mirror/

5

https://github.com/gousiosg/github-mirror/

CHAPTER 2. ENABLING TECHNOLOGIES

MongoDB database.

2.3 API REST GitHub

The API REST GitHub2 provides all kind of information from GitHub: issues, repositories,

users, code... A REST (Representational State Transfer) is a web service. REST is any

interface between systems that uses HTTP to obtain data or generate operations on that

data in all possible formats, such as XML and JSON. These operations can be: POST,

GET, PUT, DELETE, HEAD or OPTIONS.

This service will be used to scraping the commit comments of a specific user and repos-

itory. In the chapter 4.2 will be explained the structure of the request.

2.4 MongoDB

MongoDB3, from humongous, is an open source non relational data base program which is

programmed in C++. MongoDB allows us to the read information given from GHTorrent

by indexing it in mongoDB.

MongoDB can save any type of data in BSON file that is the binary representation of

JSON, therefore it allows us to export the information in JSON format. As mongoDB is

non relational database, predefined schemes are not required. It uses JSON structures in

the same way that SQL uses the database table to save the information. MongoDB comes

with a standard console from which it can be executed the different commands (export

data, import data, create users...). This console is built on JavaScript, so queries are made

using that language. All this characteristics makes mongoDB highly scalable, flexible.

MongoDB gives us the possibility to use it in localhost and in the cloud service. Mon-

goDB is used in multinationals like Telefonica, SEGA, or coinbase.

Finally mongoDB is used to index documents but also to search and store data.

As it will be mentioned later, mongodb’s operation is based on database and collections.

2https://api.github.com/
3https://www.mongodb.com/

6

https://api.github.com/
https://www.mongodb.com/

2.5. SENPY

2.5 Senpy

Senpy4 [3] is an open-source software for text analysis (sentiment and emotion) developed

by the Intelligent Systems Group (GSI) at the ETSIT-UPM. Senpy employ semantic vo-

cabularies (e.g. NIF, Marl, Onyx) and formats (turtle, JSON-LD, N-Triples and a graph)

what is an important advantage in order to collect information.

Senpy has nine different plugins by default which can be tested in the web. These

plugins analyze text in Spanish and/or English. There are two kinds of plugins.

The first kind of plugins that Senpy offers, analyze the text sentiment whose outputs are

positive, negative or neutral. Secondly there are plugins that analyze the emotions whose

outputs can be happy, sad, angry... Some of the most important are:

• sentiment-basic is a sentiment classifier that uses rule-based classification.

• emotion-anew is an emotion classifier that uses ANEW lexicon dictionary to calculate

valence-arousal-dominance of the sentence. Once we have VAD value emotion-anew

classified the text provided into the emotion that has the closer VAD value.

The framework consists of two main components:

• Senpy core is the building block of the service.

• Senpy plugins consist of the analysis algorithm.

The following figure explains Senpy’s text analysis process.

Figure 2.1: Senpy processes

4https://senpy.readthedocs.io/en/latest/

7

https://senpy.readthedocs.io/en/latest/

CHAPTER 2. ENABLING TECHNOLOGIES

2.6 Luigi

Luigi [4] is a Python package developed by Spotify in 2014. Luigi was created in order

to facilitate the creation or the management of complex pipelines. A pipeline is a set of

elements in the way that the output of an ’n’ element is the input of the ’n+1’ element. This

allows an effective management. Luigi reduces the probability of failure due to it starting

the process with previous results if a problem occurs.

Luigi is very easy to implement in this project due to its simplicity. It is made up by

four building blocks: target, task, parameters and dependencies.

1. Target : Target is a file that you have and it is the start-point. Although this may be

necessary, in practice it is not always so.

2. Task : Task is where computation is done.

3. Parameters: Parameters is such as a constructor for each luigi Task.

4. Dependencies: As Luigi use tasks, objectives and parameters, Luigi allows you to

express arbitrary dependencies in code instead of using some kind of uncomfortable

DSL configuration (dependencies are often very complicated).

Task is where computation is done. The Luigi methods that alter the behavior are:

run(), output() and requires(). During execution process, Luigi checks for errors and if

there has been any, it will stop the execution of the pipeline. We can observe the data flow

in the Figure 2.2.

Figure 2.2: Luigi’s diagram

In this thesis, Luigi is used to create and manage a pipeline that obtains and analyzes

the commit comments and also indexes data into Elasticsearch. Chapter 4.3 will explain

how a LuigiTask works.

8

2.7. ELASTICSEARCH

2.7 Elasticsearch

Elasticsearch [5] is an open-source, RESTful, distributed search and analytics engine built

on Apache Lucene. It is developed in Java. Elasticsearch, Logstash and Kibana5 are

known as ELK. ELK is a data manager that has a distributed storage in Elasticsearch. The

information is processed by Logstash and the information is displayed in Kibana and queries

can be made in real time. If it is necessary to use a large amount of different data types it

would be a recommended to use ELK. However, as this thesis does not need different data

types (just a large amount of commit comments) we are not going to use ELK. Then we

will only use Elasticsearch in order to store data.

Elastichsearch allows us to store data in JSON documents. It adds an index, later the

data can be searched or retrieved by using the Elasticsearch API.

There are basic parts of Elasticsearch that are used.

• Cluster : A cluster is a set of one or more nodes that keep all the information dis-

tributed and indexed.

• Node: A node is a server which is a component of a cluster, stores your information

and helps with the tasks of indexing and searching the cluster.

• Index : It is a collection of documents that has similar characteristics. The indexes will

be used for indexing, searching, updating and deleting information into Elasticsearch.

Indexes are identified by a name.

• Sharding and Replicas: These tools are designed in order to make the indexing task

easier.

Elasticsearch is used because more than 2,000 comments are going to be analyzed and

Elasticsearch offers a great response for both indexing and removing tests or erroneous files.

It also uses JSON objects as an answer, therefore the information given can be managed

better.

5https://www.elastic.co/es/elk-stack

9

https://www.elastic.co/es/elk-stack

CHAPTER 2. ENABLING TECHNOLOGIES

2.8 Sefarad

Sefarad6 is an environment in charge of visualizing data and making SPARQL Protocol and

RDF Query Language queries. SPARQL is a standardized language for the consultation of

RDF graphs. Sefarad has also been developed by the GSI-UPM. As it will be explained

below in chapter 4.5, Sefarad is connected to Elasticsearch to be able to represent the result

of the analysis of the commit comments through web components. These web components

are based on Polymer.

Sefarad architecture is the following:

Figure 2.3: Sefarad architecture

To sum up, Sefarad is based on two main modules. The first is in charge of the visual-

ization and the other one is in charge of Elasticsearch.

2.9 Polymer

Polymer is an open-source JavaScript library, developed by Google and GitHub users, that

use web components for making web applications.7 The main browsers supports web com-

ponents except Edge that they are developing it8. There are many multinationals that use

Polymer for their web services such as Google (YouTube, Google Play Music..), Netflix,

6https://sefarad.readthedocs.io/en/latest/
7https://en.wikipedia.org/wiki/Polymer (library)
8https://www.webcomponents.org/

10

https://sefarad.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Polymer_(library)
https://www.webcomponents.org/

2.9. POLYMER

BBVA, IBM...

Polymer allows users to make custom elements for each user. The Polymer web compo-

nents use the following technologies: HTML, CSS and JS. These programming languages

are the most popular ones for front ends, what makes Polymer web components being

appealing. They are also interactive making them a good option for the user to interact.

11

CHAPTER 2. ENABLING TECHNOLOGIES

12

CHAPTER3
Requirement Analysis

3.1 Introduction

This chapter describes the software using UML software system through Unified Modeling

Language diagrams. UML diagrams is a standard language for representing any kind of

system. UML allows us to visualize, specify, construct and document a software system.

UML diagrams [6] are important because a graphic in software engineering can represent

a software system to collect those aspects of relevance.

The UML diagrams that are going to be used in this thesis are: use cases, sequence,

class and state diagrams. Thanks to these diagrams we will be able to get an understanding

of how the application works.

To sum up, this chapter is not going to go in depth explaining all modules or the full

system. It will only depict a brief idea of how the system works.

13

CHAPTER 3. REQUIREMENT ANALYSIS

3.2 Use cases

Use case diagrams explain the main system uses. The limitations that each user has in the

application are going to be explained as well as the tasks that each user can fulfill. The

external systems that are involved in each task are also going to be explained.

3.2.1 System actors

The following figure represent the system actors diagram.

Figure 3.1: Use case UML diagram

We can observe that there are two main actors, four uses and three secondary actors

are involved in the system.

The actors and the system characteristics are:

• User : The system is focused on the user, this is the main actor. The user can manage

the Dashboard, he can also deal with the interactive charts and can draw their own

conclusions. These interactions are treated as filters, in which the user can select a

specific characteristic of the commit comments such as the programming language,

the repository or other, this way the user obtains the sentiments of these commit

comments.

• Programmer / Admin: The admin is allowed to introduce more commit comments in

14

3.3. SYSTEM SEQUENCE

order to enrich the content of the system. The admin can also introduce more charts

or modify whatever he wants.

The secondary actors characteristics are:

• Elasticsearch: In a nutshell, Elasticsearch is where the data to be provided to the user

are stored. If the admin wants to introduce more data, it will be necessary to upload

it to Elasticsearch. In Chapter 4.4 it will be explained in depth.

• API REST GitHub: The commit comments are scraped from API REST GitHub.

• Senpy : The tool that analyses the commit comments.

3.3 System sequence

In this section a system sequence diagram (SSD) will be explained. A system sequence

diagram shows how the different external tools interact with the system in order to get the

final result.

Two cases are going to be explained through a system sequence diagram: the admin

and the user cases.

3.3.1 Admin case

As it can be seen in Figure 3.5, there are four external tools: API REST GitHub, Senpy,

Elasticsearch and Web components.

• API REST GitHub: The commit comments are scraped from API REST GitHub.

Not all data provided by GitHub is used. In order to analyze commit comments the

required parameters are: ’html url’ (the url of the commit comment), ’repository’ (the

repository where the commit comments lie), ’log in’ (the user log in that owns the

repository), id user (the log in of the user that has done the commit comment), ’date’

(the date that the commit comment has been created) and the last one ’body’ (the

commit comment).

• Senpy : The parameter that GitHub provides as a ’body’ is given to Senpy in order

to be analyzed. Senpy provides the result of a commit comment in JSON-LD format.

It is used to classified the commit comments.

15

CHAPTER 3. REQUIREMENT ANALYSIS

Figure 3.2: Sequence admin UML diagram

• Elasticsearch: Once the data has been analyzed, it needs to be stored in Elasticsearch.

Elasticsearch needs a JSON with the information, an index and a doc-type.

• Web components: Web components request Elasticsearch for data. Once the compo-

nents have obtained the data they can represent it. The request takes in account the

user’s preferences.

3.3.2 User case

This case is formed by two external modules: Web components and Elasticsearch.

• Web components: The user is able to interact with web components. As previously

stated, the user can filter the commit comments so as to be able to show a specific kind

of commit comment. When a user selects a specific characteristic, the web components

take the commit comments from Elasticsearch with the chosen characteristics. Then

they are represented through web components.

16

3.4. CLASS

• Elasticsearch: It provides data to web components.

Figure 3.3: Sequence UML diagram

3.4 Class

The last UML diagram that is used is the class diagram. A class diagram describes the

structure of a system by showing the system’s classes with all its characteristics (attributes,

methods and their needs).

As it can be seen in the UML diagram, we are able to see at a glance all the dependencies

and classes that the system needs. There are are 3 classes: ScrapyTask(), AnalizeTask() and

Elasticsearch(). These three classes will be explained in detail in the upcoming Chapter 4.

17

CHAPTER 3. REQUIREMENT ANALYSIS

Figure 3.4: Class UML diagram

3.5 State diagram

The application has two main states:

1. The first state is that the user can observe the global results of the sentiment analysis.

At the same time, the user will be able to interact with the charts in order to proceed

to the following state or to end the request.

2. The second state is the display of specific results once a filter has been applied to the

charts. In addition, the user can select another filter as many times as possible. The

user will be able to return to the previous state if he wises to apply another filter or

just to see the global ones. The user can also end his query from this state.

Figure 3.5: State diagram

18

CHAPTER4
Architecture

4.1 Introduction

This chapter presents the different phases of the project. First of all, a basic structure of the

project is presented so that we can get an idea of the different modules of the project. Once

we have a general view, explaining how the different modules have been created, developed

and designed.

4.1.1 Overview

This section is going to focus on a general view of the project. The thesis is made up by

four different modules, which will be further explained more in detail as follows. The four

modules are: obtaining, analyzing, indexing and visualizing data.

1. The first module is composed by GHTorrent, mongoDB and Python. There will be

two ways of obtaining data. The first with GHTorrent and mongoDB and the second

through a Python class. As previously stated in Chapter 2.2, GHTorrent is in charge

of capturing data of the GitHub REST API where commit comments will be obtained.

The Python class is a LuigiTask in charge of capturing data from a specif repository.

19

CHAPTER 4. ARCHITECTURE

2. The second module captures data provided by Senpy. Senpy returns the sentiment of

a text that has been previously provided to Senpy through Luigi, a Python package.

3. Then the third module is in charge of indexing data into Elasticsearch through a

Python class. Luigi is also used so as to create pipeline only for uploading data.

4. Finally the last module is in charge of representing graphically via web components,

the results provided by Senpy and the data that was capture from module one such

as the user-log in, the commit comment, etc. It explains how to make a Dashboard

based on web components through Sefarad and Polymer and how it gets the data

from Elasticsearch.

Figure 4.1: Architecture

4.2 First module: Obtaining data

There are three ways that have been used in this thesis in order to obtain commit comments

from GitHub.

The first one is using GHTorrent1. On GHTorrent website we can download2 the infor-

mation of GitHub referring to a given day. Therefore this way has been used in order to

get a great deal of commit comments regardless the importance of the repository that it is

going to be analyze.

Next the data have to be indexed in mongoDB, because the information given from

GHTorrent’s website is in BSON format, so that we can visualize all the information through

mongoDB.

In order to be able to index the documents, a database has to be created. There are three

configured databases (local, admin and test) by default. Databases hold collections of doc-

uments, in other words, mongoDB stores documents in collections contained in databases.

Once a database has been created or a default one is going to be used, a collection must be

1https://github.com/gousiosg/github-mirror/
2http://ghtorrent.org/downloads.html

20

https://github.com/gousiosg/github-mirror/
http://ghtorrent.org/downloads.html

4.2. FIRST MODULE: OBTAINING DATA

established in order to index the document. After we set up a collection and a database, it

can be imported into mongoDB an ’input.bson’ file through console.

Once it has been verified that the data is correct, it has to be exported in JSON format

because Elasticsearch needs this information in JSON format as it will be seen in the next

module. It can be exported by the following command via console.

$ mongoexport --db <database-name> --collection <collection-name> --out

output.json

The other options to get information is to get data from a specific repository. Two

different ways to obtain this information are going to be shown as well as the reason why

one of then should be chosen.

• The first possibility is through a Python method using Luigi which will be explained

in the next module, in a nutshell this class3 only needs the user’s name who owns

the repository and the repository name. This Luigi class retrieves the information

given from the GitHub REST API though the following URL (in which x means

any number): https://api.github.com/repos/USER /REPOSITORY/comments/com-

ments?page=X. GitHub REST API offers 30 commit comments per page. If we focus

on a single commit comment GitHub REST API shows the information related to a

commit comment in a JSON format such as the log in of the user who made the com-

mit comment, the link, the commit comment, etc.. Therefore, the commit comments

will be saved in a JSON file for further analysis.

• The second possibility is through GHTorrent and its entire database. Once all Gems4

required by the program are installed, GHTorrent gives us also the chance to retrieve

all the information related to a repository or a single user/organization through two

different commands. As this thesis will be based on the study of particular repositories,

only the first option would be used. This option can be executed through the following

command:

$ ruby -Ilib bin/ght-retrieve-repo user repository

The final result that GHTorrent provides us is a file.db which can be convert to JSON.

Figure 4.2 shows an output example. It can be seen that the fields returned from

GitHub are commit id, user id, body, comment id and created at.

3It is a Luigi class.
4https://guides.rubygems.org/what-is-a-gem/

21

https://guides.rubygems.org/what-is-a-gem/

CHAPTER 4. ARCHITECTURE

Figure 4.2: GHTorrent’s output

As far as this thesis is concerned the first method does not satisfy the requirements of this

thesis cause it retrieves data from every repository. While the third method has been ruled

out because obtaining data and analysis in the same Python file is much more simpler.

Furthermore the only useful data that provides GHTorrents are the fields: ’created at’

and the target ’body’. This thesis is going to make a more complete study therefore the

programming language or the user (the one who did the commit comment) are required in

that database. Although all methods have been used during the developing of the project.

To sum up, we can comprise this section in the following figure in which dbX means a

database and colY means a collection. If we use the first method the scheme would corre-

spond to the top of the diagram. The method that has been used has a gray background.

As it can be seen, using any method of the three commented it is able to get the target

commit comments and continue with the following second module.

22

4.3. SECOND MODULE: ANALYZING DATA

Figure 4.3: First module

4.3 Second module: Analyzing data

After exporting the data if first or third method has been used in the first module, now it

is necessary to use Python. If second method has been used, this module is programmed

after the previous task with other Luigi Tasks. Then it will be explained in detail how the

tasks of this Python file work.

The Python file contains the methods and classes that are going to be charge of reading

the data as well as extracting as stated above, analyzing via Sefarad and storing them via

Elasticsearch. Luigi is used so as to facilitate the tasks of the pipeline (a chain of processing

elements).

The task of analyzing data will now be explained in detail. The task of obtaining data

would be practically the same.

A Luigi class can be called MyTask(luigi.Task). Luigi, as previously stated, needs some

methods to work such as run(), output(), requires() or input().

• To analyze through Luigi and Senpy, the requires() method is needed because the

AnalyzeTask needs to start working with the JSON file that it is retrieved from

ObtainingDataTask. So ObtainingDataTask will be called by AnalyzeTask so that

AnalyzeTask can get the required output. Therefore AnalyzeTask proportionate the

parameters that the ObtainingDataTask needs. Whereas if the third method from

the module 1 is used, requires() should be empty because AnalyzeTask would already

have the data provided by GHTorrent.

• The run() method contains the code that is going to be run. It is in charge of reading

23

CHAPTER 4. ARCHITECTURE

the JSON obtained from the module 1. Once the Luigi Task is able to read the

JSON file, the Senpy analyze is used. The commit comment is introduced in Senpy

in order to be analyzed by choosing a suitable filter. Then this information will be

given in a JSON-LD file. JSON-LD5 seeks the least possible effort from developers to

transform their existing JSON into JSON-LD. It is not used to validate JSON data.

The parameter which is capture from Senpy is ’marl:hasOpinion ’. The attribute

’marl:hasOpinion’ provides the attributes ’marl:hasPolarity’ that shows the sentiment

of the commit comment that has been submitted to the analysis.

This information besides the id and the user of GitHub, which come from module 1,

are stored in the output().

• Finally the output() method defines where data is going to be stored. It can be created

another JSON file with the information provided from Senpy and some parameters

from the module 1 (user, repository, commit comment...) that will be upload it in

Elasticsearch so that later the dashboard can access these data to represent them.

This will be explained in detail in the upcoming third module (Indexing data 4.4).

• Another Task that it is important to mentioned but it is not used in this thesis is the

input() method. It is a wrapper around Task.requires that returns a specific Target

objects.

In the following chart it is possible to visualize a Luigi’s structure. The chart illustrates

how the Luigi class and its methods are defined, as well as the ’main’ at the end of the

chart.

class MyTask(luigi.Task):

Parameters for this task

param = luigi.Parameter(default=42)

What other tasks it depends on

def requires(self):

return SomeOtherTask(self.param)

The business logic of the task

def run(self):

f = self.output().open(’w’)

print >>f, "hello world"

f.close()

Where it writes the output

5https://en.wikipedia.org/wiki/JSON-LD

24

https://en.wikipedia.org/wiki/JSON-LD

4.4. THIRD MODULE: INDEXING DATA

def output(self):

return luigi.LocalTarget(’/tmp’foo/bar-%s’ % self.param)

if __name__ == ’__main__’:

luigi.run()

4.4 Third module: Indexing data

This module tries to explain the tasks involved in uploading data to Elasticsearch. First

of all it is necessary to understand how Elasticsearch works. As stated above section 2.7,

Elasticsearch needs an ’index’ and a ’doc-type’ they are not the only ones it needs.

There are few more parameters that need to be explanied.

• id : it has been mentioned before, remember that it has to be unique.

• index and doc-type: they have also been mentioned before.

• host and port : it is where Elasticsearch is going to be deployed.

• timeout : as its name suggests it is a timeout in case of an error.

Then it will now be explained how to upload JSON to Elasticsearch. There are at least

two different methods for uploading files into Elasticsearch. The first is through the console

which is very similar to the deleting which is going to be explained later. The other one is

through Luigi. It is much better because it is in the same pipeline as the second module,

in other words, it indexes it automatically.

Luigi is also used for uploading data. You can notice in the box below the structure of

the Elasticsearch Luigi Class.

class Elasticsearch(CopyToIndex):

id = luigi.Parameter(default= today)

index = luigi.Parameter()

doc_type = luigi.Parameter()

host = ’localhost’

port = 9200

timeout = 100

settings = {"index.mapping.total_fields.limit":6000, "number_of_shards":

1, "number_of_replicas": 1}

25

CHAPTER 4. ARCHITECTURE

def requires(self):

return OtherTask(self.id)

Once the file that is going to be uploaded it is ready, the only command needed to

upload the file is as follows. This command only needs as parameters the index and the

doc-type.

$ python file.py Elasticsearch --index index --doc-type doc-type --local-

scheduler

If for example we have a file (a JSON) uploaded and we need to delete it because it has

some error that we have not noticed, the file can be removed with the following command

6.

$ curl -X DELETE ’http://localhost:9200/index/doc_type/X’

4.5 Fourth module: Visualizing data

Once the previous processes are successfully finished, data that is stored in Elasticsearch,

must be presented in order to be visualized creating a dashboard.

The way that this thesis presents data is through Sefarad. Sefarad uses Polymer, a

JavaScript library (as it is mentioned in Chapter 2.9) that allows to use web components

in which we can classified data under any given criteria. The dashboard is configured with

the index and the doc type that Elasticsearch used so as to get the results of the data that

a web component needs to work (total of commit comments, the result of the analysis,

etc). Each web component needs different parameters which will be explained bellow. This

parameters are given as aggregations from Elasticsearch.

On the following chapter (chapter 5) it will be explained the structure of the data in

Elasticsearch and how these aggregations are produced.

To sum up, the dashboard is composed by some web components. The parameters that

these needs to work are different from each other and are ordered from Elasticsearch as

aggregations.

The web components used in this thesis are following.

6https://www.elastic.co/guide/en/elasticsearch/reference/6.6/getting-started-explore-data.html

26

https://www.elastic.co/guide/en/elasticsearch/reference/6.6/getting-started-explore-data.html

4.5. FOURTH MODULE: VISUALIZING DATA

• Google chart Bar-char: This chart is obtained thanks to Google Chart API 7. It lets

the user to visualize data in a bar-chart. In this thesis, this chart is used to visualized

how many commit comments are neutral negative or positive. The parameters of this

web components are:

– data: It requires a JSON with the information provided from Elasticsearch.

– field : The field requires a field to visualize.

– type: It is the Google chart type.

– filters: The filters requires a field to visualize.

– cols: It indicates on the abscissas’ axis what each column means.

• Google chart pie: This widget is also obtained thanks to Google Chart API 8.

Therefore it is similar to the previous one but there is a differenc e between them and

this is that as its own name indicates, Google chart pie is a pie chart.

Figure 4.4: On the top Google chart Bar-chart, on the bottom Google chart pie

7https://developers.google.com/chart/interactive/docs/gallery/columnchart
8https://developers.google.com/chart/interactive/docs/gallery/piechart

27

https://developers.google.com/chart/interactive/docs/gallery/columnchart
hhttps://developers.google.com/chart/interactive/docs/gallery/piechart

CHAPTER 4. ARCHITECTURE

• Number chart: These widgets let the user visualize data in a different way from

the one before mentioned. This web component stores how many elements there are

of a given type and also gets the total of elements of all types. It can be appreciated

in the Figure 4.5) that the total of the commit comments are 9.4k and there are

4.2k ’Afternoon commit comments’. This web component is used to classify commit

comments by parts of the day: morning, afternoon, evening and early morning. The

parameters that are needed for this web components are:

– data: The data requires a JSON with the information provided from Elastic-

search.

– title: It sets the title of the web component.

– aggkey : The aggkey requires the aggregation name in data.

– object : It need the value of the field to represent.

– stylebg : It indicates widget background.

Figure 4.5: Number chart

• Material search chart: This web component is a search tool designed to make

queries to other web components. The query parameter is automatically updated

with the search box. This web component does not need any type of parameter.

Figure 4.6: Material search chart

• Commit comment chart: This web component lets the user visualize a list of the

commit comments that have been analyzed and and also through its green, grey or

28

4.5. FOURTH MODULE: VISUALIZING DATA

red background it can be seen if it is a positive, neutral or negative commit comment

respectively. The parameters that it needs are:

– data: The data requires a JSON with the information provided from Elastic-

search.

– face: It sets an icon in the title of the widget.

Figure 4.7: Commit comment chart

29

CHAPTER 4. ARCHITECTURE

30

CHAPTER5
Case study & Results

5.1 Introduction

This chapter explains a use case in detail and we analyze the results that we have obtained

through the analysis of sentiments. The first thing we do is explaining how the sequence is

carried out when the user interacts with an element of the dashboard. In the second place

the results of the analysis of sentiments are shown divided into: programming language,

repository, time...

5.2 Case Study

The users’ use case is now introduced. We talk about which repositories have been chosen

for the analysis, also how the web components of the dashboard work and finally we deal

with the requests for Elasticsearch.

31

CHAPTER 5. CASE STUDY & RESULTS

5.2.1 Repositories analyzed

First of all it is necessary to specify which repositories have been chosen. These repositories

can be viewed in the following table.

Language PHP TypeScript Ruby Python Kotlin JavaScript

User/Repository symfony/symfony microsoft/typescript rails/rails django/django JetBrains/kotlin twbs/bootstrap

Table 5.1: Repositories

These repositories have been chosen for several reasons.

• The first reason is due to their importance and popularity. All of them are among

the three with most stars, which is equivalent to giving it a like in any other social

network.

• Secondly because they have a large number of commit comments to make the analysis

representative, more than 1,500 each and some even more than 2,000. Although we

have tried to choose a similar figure among them to draw conclusions more easily.

• Thirdly, these languages have been chosen in order to be able to compare these results

with the other studies commented on the chapter.

5.2.2 Dashboard functionality

The dashboard, as mentioned above, is composed of web components. The dashboard

implementation can be seen below.

Figure 5.1: Dashboard implementation

32

5.2. CASE STUDY

It is possible to visualize the dashboard with the web components in any browser through

Polymer. It provides the charts with all their needs. Polymer gives a set of polyfills that

allows us to use web components in browsers that are not compatible with an user-friendly

framework. Polyfills [7] emulate the browser capabilities that are missing as closely as

possible.

Once the user enters into the application the user will find the following interface (Fig-

ure 5.2) composed by the web components that have been mentioned and described in

chapter 4.5.

Figure 5.2: Senticommit

33

CHAPTER 5. CASE STUDY & RESULTS

By clicking on a filter of the graphics, as mentioned in previous chapters, we will be able

to obtain commit comment with the requested requirements. In other words, if for example

a repository is selected, all commit comments for that repository will be obtained and the

rest of the filters will be updated according to the new parameters. This fact will give rise

to the petition of Elasticsearch.

5.2.3 Elasticsearch requests

This section will describe the procedure by which the system performs the requests to obtain

certain commit comments chosen by the user.

The web component, in the case of the example the Google pie chart, will send the

request to Elasticsearch.

The Elasticsearch structure must be explained before the aggregation structure is shown

with the commit index. These fields have been chosen because they have been considered

essential. If a different type of fields were to be obtained, they could be added. The different

fields of Elasticsearch are the following:

• id user : The id user field indicates the user who has made the commit comment and

has been saved for a future use case, for example to create a chart in the Dashboard

with the top ten most positive users.

• repo: The repo field indicates the repository where the commit comment is located.

Thanks to this field we can count how many commit comments belong to a certain

repository.

• language: The language field indicates the language.

• commit : The commit field indicates the body of the commit comment, i.e. the message

• sentiment : The sentiment field is formed in turn by a set of three values, includ-

ing a JSON-LD. The field ’marl:hasPolarity’ indicates the sentiment of the commit

comment.

• partsDay : The partsDay field indicates the phase of the day to which the commit

comment belongs, i.e. whether it was issued in the morning in the afternoon etc.

• date: The date field indicates the day on which the commit comment was created.

34

5.2. CASE STUDY

Once the structure of the commit index in Elasticsearch is known, proceed to continue

with the example mentioned above. If the request is made with a specific repository, a

petition like the following would be made.

GET commit/_search

{

"size": 0,

"aggs":{

"repo": {

"terms": {

"field": "repo.keyword",

"min_doc_count": 1,

"size": 10

}

}

’

Therefore once Elasticsearch obtains the request it will return a result like the following.

{

"took" : 1,

"timed_out" : false,

"_shards" : {

.....

},

"hits" : {

....

},

"aggregations" : {

"repo" : {

"doc_count_error_upper_bound" : 0,

"sum_other_doc_count" : 0,

"buckets" : [

{

"key" : "bootstrap",

"doc_count" : 1558,

}

]

}

}

}

Once the answer is obtained, the dashboard is updated.

35

CHAPTER 5. CASE STUDY & RESULTS

5.2.4 Dashboard update

Once the user has selected a specific feature and the response has been obtained from

Elasticsearch, the web components are updated. Therefore the web components will show

the commit comments data containing this feature.

For example in the case of bootstrap, the Google pie-chart of the dashboard (Figure 5.2)

will show the relationship between the sentiments of the bootstrap’s commit comments, the

commit chart will show the bootstrap’s commit comments and so on with all the web

components.

If the user wishes to apply another filter, let us consider an example such as selecting

‘marl:Positive’ in the Google pie-chart, the process would be repeated.

5.3 Results

Next we will present the results of the feelings shown in the confirmation comments accord-

ing to other parameters such as the programming language, the day and the time.

5.3.1 Programming language

The proportion of sentiments can be seen in Figure 5.3:

It can be noticed how most of them are neutral in the different programming languages.

The reason for this case is that many commit comments just look for a technical explanation

of the repository and others just do not show sentiments.

Knowing that ’Rails’ has been Ruby’s repository chosen for analysis and comparing the

results with the other studies we can demonstrate several things.

• The programming languages of Kotlin and TypeScript have not been analyzed in any

of the studies mentioned but in this one it has, What is the reason? The answer

is simple. These programming languages have grown according to GitHub by 260%

and 190% respectively1. Due to the importance that these languages will have in the

upcoming future, they have been considered relevant enough to be taken into account

in this project.

• The JavaScript and Ruby languages, bootstrap and rails repositories respectively, the

1https://giveitaspin.net/

36

https://giveitaspin.net/2019/01/01/programming-languages-%E2%80%8B%E2%80%8Bthat-have-grown-the-most-in-2018-according-to-github/

5.3. RESULTS

results obtained in this thesis are very similar to those obtained in other projects.

• The results of Java analysis have been quite different. The reason may be due to the

fact that the repositories chosen have been different.

Pyt
ho

n

Typ
eS

cr
ip

t

R
ub

y

K
ot

lin
PH

P

Ja
va

Sc
rip

t20

40

60

80

100

%
of

co
m

m
it

co
m

m
en

ts

Positive Negative Neutral

Figure 5.3: Commit comment’s distribution per programming language

To sum up, the obtained results have been quite similar to the ones of other studies

mentioned in this thesis. This fact confirms the accuracy of the results.

5.3.2 Time

The commit comments have also been grouped by the time they were made. The results of

the time analysis will be discussed below.

In order to draw a relationship between commit comments and time, commit comments

have been divided into four sections: morning, afternoon, evening and early morning. The

hours between intervals have been allocated to each of these periods:

37

CHAPTER 5. CASE STUDY & RESULTS

Morning Afternoon Evening Early morning

[6,13) [13,21) [21,0) [0,6)

Table 5.2: commit comment’s distribution per time

The distribution of commit comments throughout the day is as follows. As it could

not be otherwise, more commit comments take place in the afternoon reaching 44.68%.

Secondly in the morning 27.66%. Finally the evening and early morning commit comments

are the least frequent reaching 14.89% and 12.77% respectively.

Once that the repositories and the commit comments have been analyzed, it has not

been possible to get a very accurate relationship between sentiments and hours. The only

scenario with clear and precise conclusions is the early morning one. The numbers of positive

feelings between morning, afternoon and night are around 36%, whereas the early morning

period only reaches 31.8%.

5.3.3 Date

Regarding the analysis on a day by day bases we should prioritize the days in which the

highest or the lowest amount of commit comments have been produced.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Commit Comments 13.94% 13.68% 14.52% 15.09% 15.34% 13.75% 13.68%

Table 5.3: Commit comments per date

Taking into account that the sample space is seven, every day of the week, it is significant

the difference that commit comments made between Friday and Tuesday.

With regard to sentiments, the most significant findings are the following.

• Friday is when the most negative commit comments and the fewest positive commit

comments are issued. Regarding the total commits made on Friday, the negatives

commit comments represent 20.77% and the positives 33.37%.

• Regarding the total of the commits carried out on Thursday, it is significant that on

this day we obtain the lowest number of negative commit comments and the highest

38

5.3. RESULTS

number of neutrals. On the one hand, it is interesting that only 17.03% of the commit

comments made on Thursdays are negative. On the other hand, neutrals account for

47.43%.

• Saturday is when there are more positive commit comments and less neutral. Of the

total commit comments made on Saturday 37.10% are positive, whereas 44.20% are

neutral.

• The rest of the days are kept at constant and similar values. Positive commit com-

ments represent about 35.5%, negatives about 18% and neutrals about 46%.

39

CHAPTER 5. CASE STUDY & RESULTS

40

CHAPTER6
Conclusions and future work

6.1 Introduction

A GitHub commit comments sentiment analyzer has been developed in this project. In

order to carry out this system a good organization has been needed, which can be well

differentiated in several modules.

The first thing that was carried out was the scraper, which obtained the data of the

repositories that were specified. After all the data from the different scrapers had been

obtained, the commit comments were analyzed and then our own data was created. Having

obtained all the data, it was stored and classified. Then the visualization of these data has

been carried out implementing a dashboard, which requests the stored data whenever the

user needs it. Finally, the project concludes after the data has been presented and the users

will be able to draw their own conclusions.

41

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2 Achieved goals

In this work towards the final degree several tools have been presented with the purpose of

measuring the sentiments observed among computer developers.

• First of all, GitHub API data retrieval tools such as GHTorrent have been used. This

tool can be used to obtain any data from GitHub.

• During project development the use of mongoDB was also required as part of GHTor-

rent. The use of a NoSQL database was required, as well as the creation and use of

specific user profiles for these databases and collections.

• For the main focus of the project concerns data was extracted, they had to pass a

sentiment filter like Senpy’s one. Once all results were obtained, including Senpy’s,

they had to be stored in an Elasticsearch index for later comparison. These tasks

were made possible using Luigi.

• Finally the last aim of the project is the development of a dashboard which is able to

show the results stored in Elasticsearch and also the ability to be interactive upon by

a user. The dashboard, which was developed by Sefarad, is based on Polymer Web

Components. These components are the charts which offer the user the versatility

needed by dashboard. This results in an interface that is interactive and intuitive

towards the needs of the user.

6.3 Future work

The tasks that would remain pending in this thesis are:

• One of the pending options with this project would be to be able to make an analysis

of a specific segment of the programmers, that is to say, to be able to take the commit

comments from the same user/company and see what results could be obtained, having

the same sample of people for the different repositories. This way we can obtain more

accurate results of the feelings about the programming languages. However, there is

currently no user/company in GitHub that has a large number of repositories with

many commit comments in order to be representative.

• Adding more web components to the dashboard to make it even more visual, for

example with a field-chart, so you can see the sentiments of the commit comments

according to the time.

42

6.4. PROBLEMS OVERCOME

• Another pending task is getting more repositories so that we can do a more complete

analysis of programming languages such as: C, R or HTML.

• Finally, another task that could be done in the future is to create a filter of emotions.

6.4 Problems overcome

The problems I have faced in this thesis are multiple. The first one was when I accepted the

job, because I was not familiar with any of the technologies I have finally used. However, if

some problems need to be highlighted, there is no doubt that the main problems that have

slowed down the process of job creation have been the following:

• The installation of GHTorrent was much more complicated than it really is. As I said

before, my lack of knowledge of both mongoDB and GHTorrent and in addition not

knowing Ruby language, caused a big delay in the project.

• Another problem to point out was the installation of mongoDB. Although the official

mongoDB documentation is explained step by step, the latest version caused Broken

count > 0 and pkgProblemResolver Errors. This was a nightmare as nothing could be

installed or removed from the computer because these errors were constantly there.

This bug could not be fixed by any of the following recurring commands:

$ sudo apt-get upgrade && sudo apt-get update

$ sudo apt-get install -f

$ dpkg --configure -a

Finally dependencies of packages that were badly installed from /var/lib/dpkg/status

were removed (the package was mongodb-org-tools), ignoring the problems this would

lead to.

• Another problem was the limited user requests to the GitHub API, only 60 per hour.

If you exceed 60 requests per hour, you are banned for one hour without being able

to make any additional requests. This situation when scraping was a problem, as it

frequently exceeded these 60 requests.

43

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.5 Conclusions

In this end-of-degree project we have accomplished a design and development system that

extracts commit comments, analyzes and exposes them through the different technologies

hereby described. Furthermore, the commit comments have been classified according to

several criteria: programming language, repository, time and day of the week in which the

commit comments were published. As many as 9,500 commit comments have been analyzed,

and even though it is a large amount of commit comments, they are not enough to establish

rigorous conclusions. Nevertheless, certain indications can be withdrawn. The sentiments

can vary a great deal from one programming language to another, also between repositories

of the same language. Moreover as it has been previously mentioned, it can vary according

to the day. This is mainly due to the type of audience: back-end or front-end. In general,

the languages that can be used for front-end tend to be more negative than those used

exclusively for back-end. Finally, if the system could be developed with an even larger

number of commit comments, it would be possible to establish more rigorous conclusions

for this case, as well as enabling us to establish a direct relationship between hours and

sentiments. That has been previously stated.

44

APPENDIXA
Impact of this project

A.1 Introduction

Studies of sentiments have always been recurrent when it comes to drawing conclusions

from human behaviour. This is the case of emotions affecting our performance in sports [8]

or how emotions affect learning and achievement [9].

This appendix explains the different impacts of commit comment sentiment analyses at

a social, environmental, economic and ethical level.

A.2 Social impact

Sentiment analyses of commit comments have an important social impact. This thesis

describes which programming languages are the most positive or negative as well as in which

days and hours the most positive and negative commit comments are produced. Therefore,

anyone who is thinking about what programming language to program a job could be

benefited from this study. The quality and quantity of information of a programming

language may be influenced by the amount of rejection or approval of that language.

i

APPENDIX A. IMPACT OF THIS PROJECT

A.3 Environmental impact

This section deals with the environmental impacts of this research.

Regarding environmental impacts the use of computers and computer screens must be

considered. We should especially focus on the battery of the computer as the most polluting

aspect of the tools used.

To sum up, it can be stated that this thesis does not have an excessive environmental

impact.

A.4 Economic impact

This section deals with the economic impacts of this thesis.

The Introduction (chapter 1.1) shows how feelings affect the performance of workers in

their jobs. Thus people who work happily reach a better job performance. This means that

if workers’ schedules are adjusted according to the hours in which they are at their happiest

mood, costs could be saved for the company.

A.5 Ethical Implications

This section deals with the ethical impacts of this thesis.

The only relevant ethical aspect of this thesis is to take any commit comments from

GitHub. This could be unethical because a chart of the dashboard publishes them. However

the commit comments that are taken for analysis are totally public and anyone could access

them. Furthermore, the commit comments that have been chosen for this analysis belong

to GitHub’s most popular repositories which means that they have already been widely

exposed to the public.

ii

APPENDIXB
Economic budget

This appendix details an adequate budget to bring about the project...

B.1 Human resources

This section deals with the different economic aspects of human resources used in this thesis.

As the project has been carried out by a person with no previous experience in the

sector, the estimated salary is 12.5e per hour. The necessary hours to carry out the project

have been around 320 hours, therefore the total earnings is 4,000 e.

B.2 Physical resources

This section is mainly about exposing the devices used in the development of the project.

It consists basically of the personal computer and a second screen, although the screen

is completely optional.

• Computer: Its features are: Ubuntu 18.04, 16GB RAM, Intel i7, 500GB HDD, 15.7”.

iii

APPENDIX B. ECONOMIC BUDGET

The price is around 650e.

• Second screen: Its features are: IPS display, 24.2”, anti-reflective. The price is

around 250e.

B.3 Licences & Taxes

When it comes to licences, this project has been accomplished with Open Source Software

(OSS), which means that there is no need to pay for the use of any of the technologies

utilized.

Related to taxes we should take into account the Spanish legislation which establishes

that a company must pay an extra 32.6% of the employee’s salary. This amount breaks

down as follows:

• 23.6% for common contingencies.

• 5.5% for unemployment.

• 3.5% for possible work-related accident.

iv

Bibliography

[1] Emitza Guzman, David Azócar, and Yang Li. Sentiment analysis of commit comments in

github: An empirical study. In Proceedings of the 11th Working Conference on Mining Software

Repositories, MSR 2014, pages 352–355, New York, NY, USA, 2014. ACM.

[2] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Security and emotion: Sentiment

analysis of security discussions on github. In Proceedings of the 11th Working Conference on

Mining Software Repositories, MSR 2014, pages 348–351, New York, NY, USA, 2014. ACM.

[3] J. Fernando Sánchez-Rada, Carlos A. Iglesias, Ignacio Corcuera-Platas, and Oscar Araque.

Senpy: A Pragmatic Linked Sentiment Analysis Framework. In Proceedings DSAA 2016 Spe-

cial Track on Emotion and Sentiment in Intelligent Systems and Big Social Data Analysis

(SentISData), pages 735–742, Montreal, Canada, October 2016. IEEE.

[4] Erik Bernhardsson, Elias Freider, and Arash Rouhani. spotify/luigi-github.

[5] Clinton Gormley and Zachary Tong. Elasticsearch: The definitive guide: A distributed real-time

search and analytics engine. ” O’Reilly Media, Inc.”, 2015.

[6] Yashwant Waykar. ”importance of uml diagrams in software development”. 03 2013.

[7] K. Sons, C. Schlinkmann, F. Klein, D. Rubinstein, and P. Slusallek. xml3d.js: Architecture

of a polyfill implementation of xml3d. In 2013 6th Workshop on Software Engineering and

Architectures for Realtime Interactive Systems (SEARIS), pages 17–24, March 2013.

[8] Richard S Lazarus. How emotions influence performance in competitive sports. The sport

psychologist, 14(3):229–252, 2000.

[9] Reinhard Pekrun. The impact of emotions on learning and achievement: Towards a theory of

cognitive/motivational mediators. Applied Psychology, 41(4):359–376, 1992.

[10] Oscar Araque. Design and Implementation of an Event Rules Web Editor. Trabajo Fin de

Grado, Universidad Politécnica de Madrid, ETSI Telecomunicación, July 2014.

[11] J. Fernando Sánchez-Rada. Design and Implementation of an Agent Architecture Based on

Web Hooks. Master’s thesis, ETSIT-UPM, 2012.

[12] Munmun De Choudhury and Scott Counts. Understanding affect in the workplace via social

media. In Proceedings of the 2013 Conference on Computer Supported Cooperative Work, CSCW

’13, pages 303–316, New York, NY, USA, 2013. ACM.

v

BIBLIOGRAPHY

[13] Georgios Gousios. The ghtorent dataset and tool suite. In Proceedings of the 10th Working

Conference on Mining Software Repositories, MSR ’13, pages 233–236, Piscataway, NJ, USA,

2013. IEEE Press.

[14] Daniel Suárez. Design and development of a system for sleep disorder characterization using

Social Media Mining. Trabajo Fin de Grado, ETSIT, Madrid, June 2018.

vi

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Project goals and tasks
	Structure of this document

	Enabling Technologies
	Introduction
	GHTorrent
	API REST GitHub
	MongoDB
	Senpy
	Luigi
	Elasticsearch
	Sefarad
	Polymer

	Requirement Analysis
	Introduction
	Use cases
	System actors

	System sequence
	Admin case
	User case

	Class
	State diagram

	Architecture
	Introduction
	Overview

	First module: Obtaining data
	Second module: Analyzing data
	Third module: Indexing data
	Fourth module: Visualizing data

	Case study & Results
	Introduction
	Case Study
	Repositories analyzed
	Dashboard functionality
	Elasticsearch requests
	Dashboard update

	Results
	Programming language
	Time
	Date

	Conclusions and future work
	Introduction
	Achieved goals
	Future work
	Problems overcome
	Conclusions

	Appendix Impact of this project
	Introduction
	Social impact
	Environmental impact
	Economic impact
	Ethical Implications

	Appendix Economic budget
	Human resources
	Physical resources
	Licences & Taxes

	Bibliography

